Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorBalaguer-Montero, Maria
dc.contributor.authorMarcos Morales, Adrià
dc.contributor.authorLeiva, David
dc.contributor.authorAtlagich, Luz M.
dc.contributor.authorStaikoglou, Nikolaos
dc.contributor.authorMonreal, Camilo
dc.contributor.authorHernando, Jorge
dc.contributor.authorGarcia-Alvarez, Alejandro
dc.contributor.authorElez, Elena
dc.contributor.authorLigero, Marta
dc.contributor.authorZatse, Christina
dc.contributor.authorViaplana, Cristina
dc.contributor.authorMateo, Joaquin
dc.contributor.authorSalvà, Francesc
dc.contributor.authorCapdevila Castillon, Jaume
dc.contributor.authorDienstmann, Rodrigo
dc.contributor.authorGARRALDA, Elena
dc.contributor.authorPerez-Lopez, Raquel
dc.date.accessioned2025-04-24T12:42:18Z
dc.date.available2025-04-24T12:42:18Z
dc.date.issued2025-04-15
dc.identifier.citationBalaguer-Montero M, Marcos Morales A, Ligero M, Zatse C, Leiva D, Atlagich LM, et al. A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer. Cell Reports Med. 2025 Apr 15;6(4):102032.
dc.identifier.issn2666-3791
dc.identifier.urihttp://hdl.handle.net/11351/12983
dc.descriptionDeep learning; Imaging; Liver tumors
dc.description.abstractLiver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evaluation. We present SALSA (system for automatic liver tumor segmentation and detection), a fully automated tool for liver tumor detection and delineation. Developed on 1,598 computed tomography (CT) scans and 4,908 liver tumors, SALSA demonstrates superior accuracy in tumor identification and volume quantification, outperforming state-of-the-art models and inter-reader agreement among expert radiologists. SALSA achieves a patient-wise detection precision of 99.65%, and 81.72% at lesion level, in the external validation cohorts. Additionally, it exhibits good overlap, achieving a dice similarity coefficient (DSC) of 0.760, outperforming both state-of-the-art and the inter-radiologist assessment. SALSA’s automatic quantification of tumor volume proves to have prognostic value across various solid tumors (p = 0.028). SALSA’s robust capabilities position it as a potential medical device for automatic cancer detection, staging, and response evaluation.
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesCell Reports Medicine;6(4)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScientia
dc.subjectAprenentatge profund
dc.subjectFetge - Càncer - Tomografia
dc.subjectFetge - Càncer - Prognosi
dc.subjectAutomatització
dc.subject.meshDeep Learning
dc.subject.meshLiver Neoplasms
dc.subject.mesh/diagnostic imaging
dc.subject.meshPrognosis
dc.subject.meshTomography, X-Ray Computed
dc.subject.meshAutomation
dc.titleA CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.xcrm.2025.102032
dc.subject.decsaprendizaje profundo
dc.subject.decsneoplasias hepáticas
dc.subject.decs/diagnóstico por imagen
dc.subject.decspronóstico
dc.subject.decstomografía computarizada por rayos X
dc.subject.decsautomatización
dc.relation.publishversionhttps://doi.org/10.1016/j.xcrm.2025.102032
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Balaguer-Montero M, Marcos Morales A, Zatse C, Staikoglou N, Monreal C, Perez-Lopez R] Radiomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Ligero M] Radiomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany. [Leiva D] Bellvitge University Hospital, Barcelona, Spain. [Atlagich LM] Radiomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. Oncocentro Apys, Viña Del Mar, Chile. [Viaplana C] Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Mateo J, Hernando J, García-Álvarez A, Salvà F, Capdevila J, Elez E, Garralda E] Servei d’Oncologia Mèdica, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Dienstmann R] Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. University of Vic – Central University of Catalonia, Vic, Spain
dc.identifier.pmid40118052
dc.relation.projectidinfo:eu-repo/grantAgreement/ES/PE2017-2020/PI21%2F01019
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record