| dc.contributor | Vall d'Hebron Barcelona Hospital Campus |
| dc.contributor.author | Balaguer-Montero, Maria |
| dc.contributor.author | Marcos Morales, Adrià |
| dc.contributor.author | Leiva, David |
| dc.contributor.author | Atlagich, Luz M. |
| dc.contributor.author | Staikoglou, Nikolaos |
| dc.contributor.author | Monreal, Camilo |
| dc.contributor.author | Hernando, Jorge |
| dc.contributor.author | Garcia-Alvarez, Alejandro |
| dc.contributor.author | Elez, Elena |
| dc.contributor.author | Ligero, Marta |
| dc.contributor.author | Zatse, Christina |
| dc.contributor.author | Viaplana, Cristina |
| dc.contributor.author | Mateo, Joaquin |
| dc.contributor.author | Salvà, Francesc |
| dc.contributor.author | Capdevila Castillon, Jaume |
| dc.contributor.author | Dienstmann, Rodrigo |
| dc.contributor.author | GARRALDA, Elena |
| dc.contributor.author | Perez-Lopez, Raquel |
| dc.date.accessioned | 2025-04-24T12:42:18Z |
| dc.date.available | 2025-04-24T12:42:18Z |
| dc.date.issued | 2025-04-15 |
| dc.identifier.citation | Balaguer-Montero M, Marcos Morales A, Ligero M, Zatse C, Leiva D, Atlagich LM, et al. A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer. Cell Reports Med. 2025 Apr 15;6(4):102032. |
| dc.identifier.issn | 2666-3791 |
| dc.identifier.uri | http://hdl.handle.net/11351/12983 |
| dc.description | Deep learning; Imaging; Liver tumors |
| dc.description.abstract | Liver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evaluation. We present SALSA (system for automatic liver tumor segmentation and detection), a fully automated tool for liver tumor detection and delineation. Developed on 1,598 computed tomography (CT) scans and 4,908 liver tumors, SALSA demonstrates superior accuracy in tumor identification and volume quantification, outperforming state-of-the-art models and inter-reader agreement among expert radiologists. SALSA achieves a patient-wise detection precision of 99.65%, and 81.72% at lesion level, in the external validation cohorts. Additionally, it exhibits good overlap, achieving a dice similarity coefficient (DSC) of 0.760, outperforming both state-of-the-art and the inter-radiologist assessment. SALSA’s automatic quantification of tumor volume proves to have prognostic value across various solid tumors (p = 0.028). SALSA’s robust capabilities position it as a potential medical device for automatic cancer detection, staging, and response evaluation. |
| dc.language.iso | eng |
| dc.publisher | Elsevier |
| dc.relation.ispartofseries | Cell Reports Medicine;6(4) |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.source | Scientia |
| dc.subject | Aprenentatge profund |
| dc.subject | Fetge - Càncer - Tomografia |
| dc.subject | Fetge - Càncer - Prognosi |
| dc.subject | Automatització |
| dc.subject.mesh | Deep Learning |
| dc.subject.mesh | Liver Neoplasms |
| dc.subject.mesh | /diagnostic imaging |
| dc.subject.mesh | Prognosis |
| dc.subject.mesh | Tomography, X-Ray Computed |
| dc.subject.mesh | Automation |
| dc.title | A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer |
| dc.type | info:eu-repo/semantics/article |
| dc.identifier.doi | 10.1016/j.xcrm.2025.102032 |
| dc.subject.decs | aprendizaje profundo |
| dc.subject.decs | neoplasias hepáticas |
| dc.subject.decs | /diagnóstico por imagen |
| dc.subject.decs | pronóstico |
| dc.subject.decs | tomografía computarizada por rayos X |
| dc.subject.decs | automatización |
| dc.relation.publishversion | https://doi.org/10.1016/j.xcrm.2025.102032 |
| dc.type.version | info:eu-repo/semantics/publishedVersion |
| dc.audience | Professionals |
| dc.contributor.organismes | Institut Català de la Salut |
| dc.contributor.authoraffiliation | [Balaguer-Montero M, Marcos Morales A, Zatse C, Staikoglou N, Monreal C, Perez-Lopez R] Radiomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Ligero M] Radiomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany. [Leiva D] Bellvitge University Hospital, Barcelona, Spain. [Atlagich LM] Radiomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. Oncocentro Apys, Viña Del Mar, Chile. [Viaplana C] Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Mateo J, Hernando J, García-Álvarez A, Salvà F, Capdevila J, Elez E, Garralda E] Servei d’Oncologia Mèdica, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Dienstmann R] Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. University of Vic – Central University of Catalonia, Vic, Spain |
| dc.identifier.pmid | 40118052 |
| dc.relation.projectid | info:eu-repo/grantAgreement/ES/PE2017-2020/PI21%2F01019 |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess |