Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorNavarro-Garcia, Daniel
dc.contributor.authorBeets-Tan, Regina
dc.contributor.authorBlomqvist, Lennart
dc.contributor.authorBodalal, Zuhir
dc.contributor.authorMarcos Morales, Adrià
dc.contributor.authorDEANDREIS, Desiree'
dc.contributor.authorPerez-Lopez, Raquel
dc.date.accessioned2025-05-06T12:58:48Z
dc.date.available2025-05-06T12:58:48Z
dc.date.issued2025-06
dc.identifier.citationNavarro-Garcia D, Marcos A, Beets-Tan R, Blomqvist L, Bodalal Z, Deandreis D, et al. Real-world radiology data for artificial intelligence-driven cancer support systems and biomarker development. ESMO Real World Data Digit Oncol. 2025 Jun;8:100120.
dc.identifier.issn2949-8201
dc.identifier.urihttp://hdl.handle.net/11351/13041
dc.descriptionRadiology; Artificial intelligence; Oncology
dc.description.abstractThe integration of artificial intelligence (AI) and real-world data (RWD) opens up a new paradigm for exploiting radiology data to develop advanced diagnostic and therapeutic support systems. This review explores the advantages and challenges of utilizing vast digital image datasets from routine clinical practice and computational AI capabilities to enhance cancer patient care. Particularly, the application of AI to radiology data has shown promise in developing tools that automate clinical processes, such as tumor detection, while also identifying novel biomarkers in cancer for potential treatment support. Deep learning models, crucial for this transformation, require substantial data, making RWD a valuable resource for accelerating assay development. RWD offer diverse, extensive data reflecting real-world clinical practices, complementing clinical trial data and providing a broader understanding of patient populations and treatment responses. However, challenges such as data access, variability in quality, and processing complexities must be addressed. Standardizing data processing protocols and feature extraction methods is essential to ensure reproducibility and clinical applicability. Moreover, building trust among clinicians, patients, and regulatory bodies is crucial for successful implementation. This review highlights the potential of AI to analyze RWD imaging data and radiology reports, extracting relevant information and enhancing biomarker discovery. To facilitate practical use, we offer tools to address the main challenges associated with utilizing real-world imaging data, such as key aspects of image access and data processing.
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesESMO Real World Data and Digital Oncology;8
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScientia
dc.subjectIntel·ligència artificial
dc.subjectCàncer - Tractament
dc.subjectImatges - Anàlisi
dc.subjectCàncer - Imatgeria
dc.subject.meshArtificial Intelligence
dc.subject.meshBiomarkers, Tumor
dc.subject.meshNeoplasms
dc.subject.mesh/therapy
dc.subject.meshNeoplasms
dc.subject.mesh/diagnostic imaging
dc.titleReal-world radiology data for artificial intelligence-driven cancer support systems and biomarker development
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.esmorw.2025.100120
dc.subject.decsinteligencia artificial
dc.subject.decsmarcadores tumorales
dc.subject.decsneoplasias
dc.subject.decs/terapia
dc.subject.decsneoplasias
dc.subject.decs/diagnóstico por imagen
dc.relation.publishversionhttps://doi.org/10.1016/j.esmorw.2025.100120
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Navarro-Garcia D, Marcos A, Perez-Lopez R] Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Beets-Tan R, Bodalal Z] Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands. [Blomqvist L] Department of Nuclear Medicine/Hospital Physics, Karolinska University Hospital, Stockholm, Sweden. [Deandreis D] Gustave Roussy Cancer Center, UMR 1281 INSERM, CEA CNRS, Université Paris-Saclay, Paris, France
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record