Show simple item record

 
dc.contributorHospital General de Granollers
dc.contributor.authorRashwan, Hatem A.
dc.contributor.authorAsensio-Wandosell, Diego
dc.contributor.authorMartínez Momblan, Mª Antonia
dc.contributor.authorMarques Pamies, Montserrat
dc.contributor.authorRuiz-Janer, Sabina
dc.contributor.authorGil, Joan
dc.date.accessioned2025-05-12T10:42:02Z
dc.date.available2025-05-12T10:42:02Z
dc.date.issued2025-04-21
dc.identifier.citationRashwan HA, Marqués-Pamies M, Ruiz S, Gil J, Asensio-Wandosell D, Martínez-Momblán MA, et al. Acromegaly facial changes analysis using last generation artificial intelligence methodology: the AcroFace system. Pituitary. 2025 Apr 21;28(3):50.
dc.identifier.issn1573-7403
dc.identifier.urihttp://hdl.handle.net/11351/13074
dc.descriptionAcromegaly; Artificial intelligence; Facial analysis
dc.description.abstractTo describe the development of the AcroFace system, an AI-based system for early detection of acromegaly, based on facial photographs analysis. Two types of features were explored: (1) the visual/texture of a set of 2D facial images, and (2) geometric information obtained from a reconstructed 3D model from a single image. We optimized acromegaly detection by integrating SVM for geometric features and CNNs for visual features, each chosen for their strength in processing distinct data types effectively. This combination enhances overall accuracy by leveraging SVM's capability to manage structured, quantitative data and CNNs' proficiency in interpreting complex image textures, thus providing a comprehensive analysis of both geometric alignment and textural anomalies. ResNet-50, VGG-16, MobileNet, Inception V3, DensNet121 and Xception models were trained with an expert endocrinologist-based score as a ground truth. ResNet-50 model as a feature extractor and Support Vector Regression (SVR) with a linear kernel showed the best performance (accuracy δ1 of 75% and δ3 of 89%), followed by the VGG-16 as a feature extractor and SVR with a linear kernel. Geometric features yield less accurate results than visual ones. The validation cohort showed the following performance: precision 0.90, accuracy 0.93, F1-Score 0.92, sensitivity 0.93 and specificity 0.93. AcroFace system shows a good performance to discriminate acromegaly and non-acromegaly facial traits that may serve for the detection of acromegaly at an early stage as a screening procedure at a population level.
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesPituitary;28(3)
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/
dc.sourceScientia
dc.subjectAcromegàlia
dc.subjectIntel·ligència artificial
dc.subjectImatges - Anàlisi
dc.subject.meshAcromegaly
dc.subject.meshArtificial Intelligence
dc.subject.meshFacial Recognition
dc.titleAcromegaly facial changes analysis using last generation artificial intelligence methodology: the AcroFace system
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1007/s11102-025-01515-2
dc.subject.decsacromegalia
dc.subject.decsinteligencia artificial
dc.subject.decsreconocimiento facial
dc.relation.publishversionhttps://www.doi.org/10.1007/s11102-025-01515-2
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.authoraffiliation[Rashwan HA] Department of Computer Engineering and Mathematics, University of Rovira i Virgili, Tarragona, Spain. [Marqués-Pamies M] Àrea d'endocrinologia (UDEN), Hospital General de Granollers, Granollers, Spain. [Ruiz S, Asensio-Wandosell D] Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain. [Gil J] Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain. Germans Trias Research Institute and Hospital, Service of Endocrinology and Nutrition, Badalona, Spain. CIBERER group 747, Instituto de salud Carlos III, Madrid, Spain. [Martínez-Momblán MA] Fundamental and Medical-Surgical Nursing Department, Medicine and Health Sciences Faculty, Nursing School, Universitat de Barcelona (UB), L’Hospitalet de Llobregat, Spain
dc.identifier.pmid40257631
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record