Show simple item record

 
dc.contributorHospital Universitari de Girona Dr Josep Trueta
dc.contributor.authorCoral Candelo, Daniel Esteban
dc.contributor.authorSmit, Femke F.
dc.contributor.authorFarzaneh, Ali
dc.contributor.authorGieswinkel, Alexander
dc.contributor.authorFernández-Tajes, Juan
dc.contributor.authorSparsø, Thomas
dc.contributor.authorBlanch, Jordi
dc.contributor.authorFernández-Real, Jose Manuel
dc.contributor.authorRamos , Rafel
dc.date.accessioned2025-06-05T08:32:14Z
dc.date.available2025-06-05T08:32:14Z
dc.date.copyright2024
dc.date.issued2025-02
dc.identifier.citationCoral DE, Smit F, Farzaneh A, Gieswinkel A, Fernandez Tajes J, Sparsø T, et al. Subclassification of obesity for precision prediction of cardiometabolic diseases. Nat Med. 2025 Feb;31(2):534-543.
dc.identifier.issn1546-170X
dc.identifier.urihttp://hdl.handle.net/11351/13213
dc.descriptionCardiovascular diseases; Diabetes Mellitus Type 2; Obesity
dc.description.abstractObesity and cardiometabolic disease often, but not always, coincide. Distinguishing subpopulations within which cardiometabolic risk diverges from the risk expected for a given body mass index (BMI) may facilitate precision prevention of cardiometabolic diseases. Accordingly, we performed unsupervised clustering in four European population-based cohorts (N ≈ 173,000). We detected five discordant profiles consisting of individuals with cardiometabolic biomarkers higher or lower than expected given their BMI, which generally increases disease risk, in total representing ~20% of the total population. Persons with discordant profiles differed from concordant individuals in prevalence and future risk of major adverse cardiovascular events (MACE) and type 2 diabetes. Subtle BMI-discordances in biomarkers affected disease risk. For instance, a 10% higher probability of having a discordant lipid profile was associated with a 5% higher risk of MACE (hazard ratio in women 1.05, 95% confidence interval 1.03, 1.06, P = 4.19 × 10-10; hazard ratio in men 1.05, 95% confidence interval 1.04, 1.06, P = 9.33 × 10-14). Multivariate prediction models for MACE and type 2 diabetes performed better when incorporating discordant profile information (likelihood ratio test P < 0.001). This enhancement represents an additional net benefit of 4-15 additional correct interventions and 37-135 additional unnecessary interventions correctly avoided for every 10,000 individuals tested.
dc.language.isoeng
dc.publisherNature Publishing Company
dc.relation.ispartofseriesNature Medicine;31(2)
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectDiabetis no-insulinodependent
dc.subjectMalalties cardiovasculars
dc.subjectObesitat
dc.subject.meshCardiovascular Diseases
dc.subject.meshDiabetes Mellitus, Type 2
dc.subject.meshObesity
dc.subject.mesh/epidemiology
dc.subject.meshObesity
dc.subject.mesh/complications
dc.titleSubclassification of obesity for precision prediction of cardiometabolic diseases
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1038/s41591-024-03299-7
dc.subject.decsenfermedades cardiovasculares
dc.subject.decsdiabetes mellitus tipo II
dc.subject.decsobesidad
dc.subject.decs/epidemiología
dc.subject.decsobesidad
dc.subject.decs/complicaciones
dc.relation.publishversionhttps://doi.org/10.1038/s41591-024-03299-7
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.event.productorBiblioteca
dc.contributor.authoraffiliation[Coral DE] Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Helsingborg, Sweden. [Smit F] Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands. [Farzaneh A] Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. [Gieswinkel A] Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany. [Fernandez Tajes J] Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Helsingborg, Sweden. [Sparsø T] Department of Pharmacometrics, Novo Nordisk A/S, Søborg, Denmark. [Blanch J, Fernandez-Real JM, Ramos R] Nutrition, Eumetabolism and Health Group, Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Girona, Spain. Departament de Ciències Mèdiques, Universitat de Girona, Girona, Spain. CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. Unitat de Diabetis, Endocrinologia i Nutrició, Hospital Universitari de Girona Doctor Josep Trueta, Institut Català de la Salut (ICS), Girona, Spain
dc.identifier.pmid39448862
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record