Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorAguado Flor, Ester
dc.contributor.authorAguado-Barrera, Miguel Elías
dc.contributor.authorDuran-Lozano, Laura
dc.contributor.authorVillacampa Javierre, Guillermo
dc.contributor.authorReyes López, Victoria
dc.contributor.authorMolla, Meritxell
dc.contributor.authorAltabas González, Manuel
dc.contributor.authorGiraldo Marin, Alexandra
dc.contributor.authordiez, orland
dc.contributor.authorGiralt López de Sagredo, Jordi
dc.contributor.authorGutiérrez-Enríquez, Sara
dc.contributor.authorNavarro Garces, Victor
dc.date.accessioned2025-08-05T10:05:26Z
dc.date.available2025-08-05T10:05:26Z
dc.date.issued2025-08
dc.identifier.citationAguado-Flor E, Reyes VM, Navarro V, Mollà M, Aguado-Barrera ME, Altabas M, et al. Integrating Genetic Polymorphisms and Clinical Data to Develop Predictive Models for Skin Toxicity in Breast Cancer Radiation Therapy. The Breast. 2025 Aug;82:104506.
dc.identifier.issn0960-9776
dc.identifier.urihttp://hdl.handle.net/11351/13484
dc.descriptionBreast cancer; Predictive models; Radiation therapy-induced side-effects
dc.description.abstractBackground: We aim to develop and validate predictive models for acute and late skin toxicity in breast cancer (BC) patients undergoing radiation therapy (RT). Models incorporate a genetic profile-comprising candidate single nucleotide polymorphisms (SNPs) in non-coding RNAs and previously reported toxicity-associated variants-combined with clinical variables. Methods: The study involved 1979 BC patients monitored for two to eight years post-RT in a multi-centre study. We assessed acute (oedema/erythema) and late (atrophy/fibrosis) toxicity using logistic regression and Cox proportional hazards models. The cohort was divided into training and validation datasets. Results: Six SNPs demonstrated to be predictors of acute (rs13116075, rs12565978, rs72550778 and rs7284767) and late toxicity (rs16837908 and rs61764370) either in the training or validation cohort. However, none of these SNPs were consistently associated with toxicity across both stages of analysis. The rs13116075, rs12565978 and rs16837908 were previously reported to be associated with RT toxicity. In the validation phase, SNP-based models showed limited predictive ability, with AUC values of 0.49 and c-index of 0.54 for acute and late toxicity, respectively. Models incorporating either clinical variables alone or in combination with SNPs achieved similar AUC and c-index values of ∼0.60 for acute and late toxicity, respectively. However, the combined model exhibited the highest predictive accuracy for acute and late toxicity, both in the training and the validation cohorts. Conclusions: Our findings highlight the importance of combining clinical data with genetic markers to enhance the accuracy of models predicting RT toxicity in BC.
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesThe Breast;82
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.sourceScientia
dc.subjectMama - Càncer - Radioteràpia - Complicacions
dc.subjectPolimorfisme genètic
dc.subject.meshBreast Neoplasms
dc.subject.meshRadiotherapy
dc.subject.mesh/adverse effects
dc.subject.meshPolymorphism, Single Nucleotide
dc.titleIntegrating genetic polymorphisms and clinical data to develop predictive models for skin toxicity in breast cancer radiation therapy
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.breast.2025.104506
dc.subject.decsneoplasias de la mama
dc.subject.decsradioterapia
dc.subject.decs/efectos adversos
dc.subject.decspolimorfismo de nucleótido único
dc.relation.publishversionhttps://doi.org/10.1016/j.breast.2025.104506
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Aguado-Flor E] Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. University of Barcelona, Barcelona, Spain. [Reyes VM, Mollà M, Altabas M, Giraldo A] Servei d’Oncologia Radioteràpica, Vall d’Hebron Hospital Universitari, Barcelona, Spain. [Navarro V, Villacampa G] Biostatistics Unit, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Aguado-Barrera ME] Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain. Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, A Coruña, Spain. [Duran-Lozano L, Gutiérrez-Enríquez S] Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Diez O] Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. Àrea de Genètica Clínica i Molecular, Vall d’Hebron Hospital Universitari, Barcelona, Spain. [Giralt J] Servei d’Oncologia Radioteràpica, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Radiation Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
dc.identifier.pmid40570703
dc.identifier.wos001523183800001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record