. Obre en una nova finestra.logo Gencat
Menú
  • identificacioPrivate area. Obre en una nova finestra.
  • Contact Us
  • Idioma: en
    • català
    • Castellano
    • English
Cercador

Scientia. Department of Health Digital Information Depot

  • Home
  • About Scientia
    • What is it and what does it include?
    • Institutional policy for promoting open access to scientific literature
    • How to publish?
    • Document type
    • Intellectual property and Creative Commons
  • Frequently Asked Questions
. Obre en una nova finestra.Logotip de la Generalitat

|Scientia. Department of Health Digital Information Depot

Repositori ScientiaLogo 10 anys
  • Home 
  • Departament de Salut - DS 
  • Agència de Qualitat i Avaluació Sanitàries de Catalunya - AQUAS 
  • AQUAS - Articles científics 
  • View Item 
JavaScript is disabled for your browser. Some features of this site may not work without it.
 

A machine learning model exploring the relationship between chronic medication and COVID-19 clinical outcomes

Thumbnail
View
A machine learning model exploring the relationship between chronic medication and COVID‑19 clinical outcomes, 2025 (1.194Mb)
Author
Miró, Berta
Díaz González, Natalia ORCID
Martínez-Cerdá, Juan-Francisco ORCID
Viñas-Bardolet, Clara ORCID
Sánchez-Pla, Alex ORCID
SÁNCHEZ-MONTALVÁ, ADRIÁN ORCID
Miarons, Marta ORCID
Date
2025-08
Permanent link
http://hdl.handle.net/11351/13586
DOI
10.1007/s11096-025-01955-7
ISSN
2210-7711
PMID
40720062
Share on TwitterShare on FacebookShare on TelegramShare on WhatsappShare on Linkedin

Show full item record
Abstract
The impact of chronic medication on COVID-19 outcomes has been a topic of ongoing debate since the onset of the pandemic. Investigating how specific long-term treatments influence infection severity and prognosis is essential for optimising patient management and care. This study aimed to investigate the association between chronic medication and COVID-19 outcomes, using machine learning to identify key medication-related factors. We analysed 137,835 COVID-19 patients in Catalonia (February-September 2020) using eXtreme Gradient Boosting to predict hospitalisation, ICU admission, and mortality. This was complemented by univariate logistic regression analyses and a sensitivity analysis focusing on diabetes, hypertension, and lipid disorders. Participants had a mean age of 53 (SD 20) years, with 57% female. The best model predicted mortality risk in 18 to 65-year-olds (AUCROC 0.89, CI 0.85-0.92). Key features identified included the number of prescribed drugs, systemic corticoids, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, and hypertension drugs. A sensitivity analysis identified that hypertensive participants over 65 taking angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs) had lower mortality risk (OR 0.78 CI 0.68-0.92) compared to those on other antihypertensive medication (OR 0.8 CI 0.68-0.95). Treatment with inhibitors of dipeptidyl peptidase 4 was associated to higher mortality in participants aged 18-65, while metformin showed a protective effect in those over 65 (OR 0.79, 95% CI 0.68-0.92). Machine learning models effectively distinguished COVID-19 outcomes. Patients under ACEi or ARBs or biguanides should continue their prescribed medications, which may offer protection over alternative treatments.
Keywords
ACE inhibitors; ARBs; COVID-19; HMG-CoA reductase; Machine learning; Metformin; Mortality; Polypharmacy; Prediction models
Bibliographic citation
Miró B, Díaz González N, Martínez-Cerdá JF, Viñas-Bardolet C, Sánchez-Pla A, Sánchez-Montalvá A, Miarons M. A machine learning model exploring the relationship between chronic medication and COVID-19 clinical outcomes. Int J Clin Pharm. 2025 Aug;47(4):1075-1086.
Audience
Professionals
This item appears in following collections
  • AQUAS - Articles científics [61]
  • HVH - Articles científics [4466]
  • VHIR - Articles científics [1750]

Com t'atenem

Pots contactar amb nosaltres mitjançant qualsevol dels següents canals de contacte.

  • Icona de X Twitter . Obre en una nova finestra.
  • Icona de Facebook Facebook . Obre en una nova finestra.
  • Icona de missatge Bústia de contacte . Obre en una nova finestra.
  • Icona de preguntes freqüents Preguntes freqüents . Obre en una nova finestra.
Logo generalitat
  • Sobre el web
  • Sobre gencat
  • Avís legal
  • Accessibilitat
  • Política de galetes
  • Mapa web

Dimensions

Altmetrics

Web of Science

Google Schoolar

Web of Science

times cited
Google academico
All of ScientiaParticipants & CollectionsBy Issue DateAuthorsTitlesBy subject This CollectionBy Issue DateAuthorsTitlesBy subject
My Scientia LoginRegister
Statistics View Usage Statistics
HelpScientia’s infographicGuide to self-archiving
We participate in
OpenAIRE logoRecercat logoRecolecta logo

Com t'atenem

Pots contactar amb nosaltres mitjançant qualsevol dels següents canals de contacte.

  • Icona de X Twitter . Obre en una nova finestra.
  • Icona de Facebook Facebook . Obre en una nova finestra.
  • Icona de missatge Bústia de contacte . Obre en una nova finestra.
  • Icona de preguntes freqüents Preguntes freqüents . Obre en una nova finestra.
Logo generalitat
  • Sobre el web
  • Sobre gencat
  • Avís legal
  • Accessibilitat
  • Política de galetes
  • Mapa web