Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorBurns, Siobhan
dc.contributor.authorRider, Nicholas
dc.contributor.authorPlanas, Jacques
dc.contributor.authorSoler-Palacin, Pere
dc.date.accessioned2025-09-22T08:12:49Z
dc.date.available2025-09-22T08:12:49Z
dc.date.issued2025-07-10
dc.identifier.citationSoler-Palacín P, Rivière JG, Burns SO, Rider NL. New tools for diagnosis of primary immunodeficiencies: from awareness to artificial intelligence. Front Immunol. 2025 Jul 10;16:1593897.
dc.identifier.issn1664-3224
dc.identifier.urihttp://hdl.handle.net/11351/13706
dc.descriptionArtificial intelligence; Primary immunodeficiency; Screening
dc.description.abstractPrimary immune deficiencies (PI) are rare diseases associated with frequent, severe infections, inflammatory and autoimmune diseases and/or cancer. Because of the variability in presentation, undiagnosed PI patients can be encountered by many different medical specialists. A lack of awareness of and the rarity of PI can lead to delayed diagnosis particularly among primary care physicians and non-immunology specialists. These delays can lead to irreversible sequelae, decreased quality of life and premature mortality. In this review, we describe two projects designed to decrease the time to diagnosis in PI patients: 1) the expert-driven PIDCAP project conducted in Spain to promote early diagnosis in the primary care setting, and 2) a multi-modal data-driven approach using artificial intelligence and machine learning to identify individuals at high risk for PI. Both approaches aim to create widely available tools to promote early diagnosis and treatment of PI. Initial results have been positive. Future directions include larger studies and potentially combining expert-driven and data-driven approaches.
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.ispartofseriesFrontiers in Immunology;16
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectIntel·ligència artificial
dc.subjectAprenentatge automàtic
dc.subjectSíndromes de deficiència immunitària - Diagnòstic
dc.subject.meshImmunologic Deficiency Syndromes
dc.subject.mesh/diagnosis
dc.subject.meshArtificial Intelligence
dc.subject.meshMachine Learning
dc.subject.meshEarly Diagnosis
dc.titleNew tools for diagnosis of primary immunodeficiencies: from awareness to artificial intelligence
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3389/fimmu.2025.1593897
dc.subject.decssíndromes de inmunodeficiencia
dc.subject.decs/diagnóstico
dc.subject.decsinteligencia artificial
dc.subject.decsaprendizaje automático
dc.subject.decsdiagnóstico precoz
dc.relation.publishversionhttps://doi.org/10.3389/fimmu.2025.1593897
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Soler-Palacín P, Rivière JG] Departament de Pediatria, d'Obstetrícia i Ginecologia i de Medicina Preventiva i Salut Públic, Universitat Autònoma de Barcelona, Barcelona, Spain. Grup de Recerca d’Infecció i Immunitat al Pacient Pediàtric, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Unitat de Patologia Infecciosa i Immunodeficiències de Pediatria, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain. [Burns SO] Institute for Immunity and Transplantation, University College London, London, United Kingdom. Department of Clinical Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom. [Rider NL] Virginia Tech Carilion School of Medicine, Department of Health Systems and Implementation Science, Roanoke, VA, United States
dc.identifier.pmid40709193
dc.identifier.wos001534023000001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record