| dc.contributor | Vall d'Hebron Barcelona Hospital Campus |
| dc.contributor.author | Burns, Siobhan |
| dc.contributor.author | Rider, Nicholas |
| dc.contributor.author | Planas, Jacques |
| dc.contributor.author | Soler-Palacin, Pere |
| dc.date.accessioned | 2025-09-22T08:12:49Z |
| dc.date.available | 2025-09-22T08:12:49Z |
| dc.date.issued | 2025-07-10 |
| dc.identifier.citation | Soler-Palacín P, Rivière JG, Burns SO, Rider NL. New tools for diagnosis of primary immunodeficiencies: from awareness to artificial intelligence. Front Immunol. 2025 Jul 10;16:1593897. |
| dc.identifier.issn | 1664-3224 |
| dc.identifier.uri | http://hdl.handle.net/11351/13706 |
| dc.description | Artificial intelligence; Primary immunodeficiency; Screening |
| dc.description.abstract | Primary immune deficiencies (PI) are rare diseases associated with frequent, severe infections, inflammatory and autoimmune diseases and/or cancer. Because of the variability in presentation, undiagnosed PI patients can be encountered by many different medical specialists. A lack of awareness of and the rarity of PI can lead to delayed diagnosis particularly among primary care physicians and non-immunology specialists. These delays can lead to irreversible sequelae, decreased quality of life and premature mortality. In this review, we describe two projects designed to decrease the time to diagnosis in PI patients: 1) the expert-driven PIDCAP project conducted in Spain to promote early diagnosis in the primary care setting, and 2) a multi-modal data-driven approach using artificial intelligence and machine learning to identify individuals at high risk for PI. Both approaches aim to create widely available tools to promote early diagnosis and treatment of PI. Initial results have been positive. Future directions include larger studies and potentially combining expert-driven and data-driven approaches. |
| dc.language.iso | eng |
| dc.publisher | Frontiers Media |
| dc.relation.ispartofseries | Frontiers in Immunology;16 |
| dc.rights | Attribution 4.0 International |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
| dc.source | Scientia |
| dc.subject | Intel·ligència artificial |
| dc.subject | Aprenentatge automàtic |
| dc.subject | Síndromes de deficiència immunitària - Diagnòstic |
| dc.subject.mesh | Immunologic Deficiency Syndromes |
| dc.subject.mesh | /diagnosis |
| dc.subject.mesh | Artificial Intelligence |
| dc.subject.mesh | Machine Learning |
| dc.subject.mesh | Early Diagnosis |
| dc.title | New tools for diagnosis of primary immunodeficiencies: from awareness to artificial intelligence |
| dc.type | info:eu-repo/semantics/article |
| dc.identifier.doi | 10.3389/fimmu.2025.1593897 |
| dc.subject.decs | síndromes de inmunodeficiencia |
| dc.subject.decs | /diagnóstico |
| dc.subject.decs | inteligencia artificial |
| dc.subject.decs | aprendizaje automático |
| dc.subject.decs | diagnóstico precoz |
| dc.relation.publishversion | https://doi.org/10.3389/fimmu.2025.1593897 |
| dc.type.version | info:eu-repo/semantics/publishedVersion |
| dc.audience | Professionals |
| dc.contributor.organismes | Institut Català de la Salut |
| dc.contributor.authoraffiliation | [Soler-Palacín P, Rivière JG] Departament de Pediatria, d'Obstetrícia i Ginecologia i de Medicina Preventiva i Salut Públic, Universitat Autònoma de Barcelona, Barcelona, Spain. Grup de Recerca d’Infecció i Immunitat al Pacient Pediàtric, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Unitat de Patologia Infecciosa i Immunodeficiències de Pediatria, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain. [Burns SO] Institute for Immunity and Transplantation, University College London, London, United Kingdom. Department of Clinical Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom. [Rider NL] Virginia Tech Carilion School of Medicine, Department of Health Systems and Implementation Science, Roanoke, VA, United States |
| dc.identifier.pmid | 40709193 |
| dc.identifier.wos | 001534023000001 |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess |