| dc.contributor | Vall d'Hebron Barcelona Hospital Campus |
| dc.contributor.author | Dreyse, Natalia |
| dc.contributor.author | Salazar, Nicole |
| dc.contributor.author | Munita, Jose M. |
| dc.contributor.author | Rello, Jordi |
| dc.contributor.author | López, René |
| dc.date.accessioned | 2025-10-14T08:26:04Z |
| dc.date.available | 2025-10-14T08:26:04Z |
| dc.date.issued | 2025-07-22 |
| dc.identifier.citation | Dreyse N, Salazar N, Munita JM, Rello J, López R. Vancomycin levels for Bayesian dose-optimization in critical care: a prospective cohort study. Front Med. 2025 Jul 22;12:1575224. |
| dc.identifier.issn | 2296-858X |
| dc.identifier.uri | http://hdl.handle.net/11351/13840 |
| dc.description | Antibiotics; Glycopeptides; Intensive care unit |
| dc.description.abstract | Background: Vancomycin dosing in critically ill patients typically requires monitoring the area under the concentration-time curve/minimum inhibitory concentration (AUC/MIC), often using at least two vancomycin levels (VLs). However, the optimal number of VLs needed for accurate AUC/MIC estimation in this population remains uncertain. This study aimed to determine the minimum number of VLs required to accurately estimate the AUC/MIC in critically ill patients treated with intermittent infusion of vancomycin.
Methods: A prospective cohort study was conducted in critically ill patients, where VLs were obtained at peak, beta, and trough phases. Five AUC estimates were derived using PrecisePK™, a Bayesian software: AUC-1 [peak, beta (2 h after the end infusion), trough], AUC-2 (beta, trough), AUC-3 (peak, trough), AUC-4 (trough), and AUC-5 (only Bayesian prior, without VL). These estimates were compared for accuracy and bias (mean ± SEM) against the reference AUC calculated via the trapezoidal model (AUCRef).
Results: We enrolled 36 adult patients with age of 65 (52–77) years, moderate severity [APACHE II 10 (5–14) and SOFA 5 (4–6)], 6 of them in ECMO and 4 in renal replacement therapy. A total of 108 blood samples for VL were analyzed. The AUC-3 (0.976 ± 0.012) showed greater accuracy compared to AUC-4 (1.072 ± 0.032, p = 0.042) and AUC-5 (1.150 ± 0.071, p = 0.042). AUC-3 also demonstrated lower bias (0.053 ± 0.009) than AUC-4 (0.134 ± 0.026, p = 0.036) and AUC-5 (0.270 ± 0.060, p = 0.003). Bland–Altman analysis indicated better agreement between AUC-3 and AUC-2 with AUCRef.
Conclusion: Bayesian software using two vancomycin levels provides a more accurate and less biased AUC/MIC estimation in critically ill patients. |
| dc.language.iso | eng |
| dc.publisher | Frontiers Media |
| dc.relation.ispartofseries | Frontiers in Medicine;12 |
| dc.rights | Attribution 4.0 International |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
| dc.source | Scientia |
| dc.subject | Medicaments antibacterians - Ús terapèutic |
| dc.subject | Posologia |
| dc.subject | Malalts en estat crític |
| dc.subject | Medicaments - Monitoratge |
| dc.subject | Estadística bayesiana |
| dc.subject.mesh | Bayes Theorem |
| dc.subject.mesh | Drug Monitoring |
| dc.subject.mesh | Anti-Bacterial Agents |
| dc.subject.mesh | /administration & dosage |
| dc.subject.mesh | Critical Illness |
| dc.title | Vancomycin levels for Bayesian dose-optimization in critical care: a prospective cohort study |
| dc.type | info:eu-repo/semantics/article |
| dc.identifier.doi | 10.3389/fmed.2025.1575224 |
| dc.subject.decs | teorema de Bayes |
| dc.subject.decs | monitorización de medicamentos |
| dc.subject.decs | antibacterianos |
| dc.subject.decs | /administración & dosificación |
| dc.subject.decs | enfermedad crítica |
| dc.relation.publishversion | https://doi.org/10.3389/fmed.2025.1575224 |
| dc.type.version | info:eu-repo/semantics/publishedVersion |
| dc.audience | Professionals |
| dc.contributor.organismes | Institut Català de la Salut |
| dc.contributor.authoraffiliation | [Dreyse N] Departamento de Paciente Crítico, Clínica Alemana de Santiago, Santiago, Chile. Departamento de Farmacia, Clínica Alemana de Santiago, Santiago, Chile. [Salazar N] Departamento de Farmacia, Clínica Alemana de Santiago, Santiago, Chile. [Munita JM] Genomics & Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile. [Rello J] Grup de Recerca Clínica/Innovació en la Pneumònia i Sèpsia, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Formation, Recherche, Assessment (FOREVA), CHU Nîmes, Nîmes, France. Centro Investigación Biomédica en Red (CIBERES), Instituto Salud Carlos III, Madrid, Spain. [López R] Departamento de Paciente Crítico, Clínica Alemana de Santiago, Santiago, Chile. Grupo Intensivo, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile |
| dc.identifier.pmid | 40766073 |
| dc.identifier.wos | 001543616100001 |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess |