Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorChen, Zhe
dc.contributor.authorQiang, Min
dc.contributor.authorHong, Yang
dc.contributor.authorTian, Weibo
dc.contributor.authorTang, Mingbo
dc.contributor.authorLiu, Wei
dc.date.accessioned2025-10-14T08:30:39Z
dc.date.available2025-10-14T08:30:39Z
dc.date.issued2025-06-25
dc.identifier.citationChen Z, Qiang M, Hong Y, Tian W, Tang M, Liu W. Machine learning-based preoperative prediction of perioperative venous thromboembolism in Chinese lung cancer patients: a retrospective cohort study. Front Oncol. 2025 Jun 25;15:1588817.
dc.identifier.issn2234-943X
dc.identifier.urihttp://hdl.handle.net/11351/13841
dc.descriptionMachine learning; Perioperative period; Venous thromboembolism
dc.description.abstractBackground: Perioperative venous thromboembolism (VTE) is a severe complication in lung cancer surgery. Traditional prediction models have limitations in handling complex clinical data, whereas machine learning (ML) offers enhanced predictive accuracy. This study aimed to develop and validate an ML-based model for preoperative VTE risk assessment. Methods: A retrospective cohort of 1,013 lung cancer patients who underwent surgery at the First Hospital of Jilin University (April 2021–December 2023) was analyzed. Preoperative clinical and laboratory data were collected, and six key predictors—age, mean corpuscular volume, mean corpuscular hemoglobin, fibrinogen, D-dimer, and albumin—were identified using univariate analysis and Lasso regression. Eight ML models, including extreme gradient boosting (XGB), random forest, logistic regression, and support vector machines, were trained and evaluated using AUC, precision-recall curves, decision curve analysis, and calibration curves. Results: VTE occurred in 175 patients (17.3%). The XGB model demonstrated the highest predictive performance (AUC: 0.99 training, 0.66 validation; AUPRC: 0.323), with age and mean corpuscular volume identified as the most influential predictors. An online prediction tool was developed for clinical application. Conclusion: The ML-based XGB model provides a reliable preoperative risk assessment for VTE in lung cancer patients, enabling early risk stratification and personalized thromboprophylaxis.
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.ispartofseriesFrontiers in Oncology;15
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectPulmons - Càncer - Cirurgia
dc.subjectTromboembolisme - Complicacions
dc.subjectAprenentatge automàtic
dc.subject.meshVenous Thromboembolism
dc.subject.meshLung Neoplasms
dc.subject.mesh/surgery
dc.subject.meshMachine Learning
dc.subject.meshPerioperative Period
dc.titleMachine learning-based preoperative prediction of perioperative venous thromboembolism in Chinese lung cancer patients: a retrospective cohort study
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3389/fonc.2025.1588817
dc.subject.decstromboembolia venosa
dc.subject.decsneoplasias pulmonares
dc.subject.decs/cirugía
dc.subject.decsaprendizaje automático
dc.subject.decsperíodo perioperatorio
dc.relation.publishversionhttps://doi.org/10.3389/fonc.2025.1588817
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Chen Z, Tang M, Liu W] Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China. [Qiang M] Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China. College of Clinical Medicine, Jilin University, Changchun, China. [Hong Y] Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. [Tian W] Department of Neurology, The First Hospital of Jilin University, Changchun, China
dc.identifier.pmid40636688
dc.identifier.wos001524414900001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record