Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorGanjgahi, Habib
dc.contributor.authorHäring, Dieter Adrian
dc.contributor.authorAarden, Piet
dc.contributor.authorGraham, Gordon
dc.contributor.authorSun, Yang
dc.contributor.authorGardiner, Stephen
dc.contributor.authorMontalban, Xavier
dc.date.accessioned2025-10-29T08:13:23Z
dc.date.available2025-10-29T08:13:23Z
dc.date.issued2025-10
dc.identifier.citationGanjgahi H, Häring DA, Aarden P, Graham G, Sun Y, Gardiner S, et al. AI-driven reclassification of multiple sclerosis progression. Nat Med. 2025 Oct;31:3414–3424.
dc.identifier.issn1546-170X
dc.identifier.urihttp://hdl.handle.net/11351/13946
dc.descriptionMachine learning; Multiple sclerosis; Progression
dc.description.abstractMultiple sclerosis (MS) affects 2.9 million people. Traditional classification of MS into distinct subtypes poorly reflects its pathobiology and has limited value for prognosticating disease evolution and treatment response, thereby hampering drug discovery. Here we report a data-driven classification of MS disease evolution by analyzing a large clinical trial database (approximately 8,000 patients, 118,000 patient visits and more than 35,000 magnetic resonance imaging scans) using probabilistic machine learning. Four dimensions define MS disease states: physical disability, brain damage, relapse and subclinical disease activity. Early/mild/evolving (EME) MS and advanced MS represent two poles of a disease severity spectrum. Patients with EME MS show limited clinical impairment and minor brain damage. Transitions to advanced MS occur via brain damage accumulation through inflammatory states, with or without accompanying symptoms. Advanced MS is characterized by moderate to high disability levels, radiological disease burden and risk of disease progression independent of relapses, with little probability of returning to earlier MS states. We validated these results in an independent clinical trial database and a real-world cohort, totaling more than 4,000 patients with MS. Our findings support viewing MS as a disease continuum. We propose a streamlined disease classification to offer a unifying understanding of the disease, improve patient management and enhance drug discovery efficiency and precision.
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.ispartofseriesNature Medicine;31
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectIntel·ligència artificial
dc.subjectEsclerosi múltiple - Imatgeria per ressonància magnètica
dc.subjectAprenentatge automàtic
dc.subjectEsclerosi múltiple - Prognosi
dc.subject.meshArtificial Intelligence
dc.subject.meshMagnetic Resonance Imaging
dc.subject.meshMultiple Sclerosis
dc.subject.meshMachine Learning
dc.subject.meshDisease Progression
dc.titleAI-driven reclassification of multiple sclerosis progression
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1038/s41591-025-03901-6
dc.subject.decsinteligencia artificial
dc.subject.decsimagen por resonancia magnética
dc.subject.decsesclerosis múltiple
dc.subject.decsaprendizaje automático
dc.subject.decsprogresión de la enfermedad
dc.relation.publishversionhttps://doi.org/10.1038/s41591-025-03901-6
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Ganjgahi H] Department of Statistics, University of Oxford, Oxford, UK. Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK. [Häring DA, Aarden P, Graham G] Novartis Pharma AG, Basel, Switzerland. [Sun Y, Gardiner S] Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK. [Montalban X] Servei de Neurologia, Centre d’Esclerosi Múltiple de Catalunya (CEMCAT), Barcelona, Spain. Vall d’Hebron Hospital Universitari, Barcelona, Spain
dc.identifier.pmid40835969
dc.identifier.wos001553771600001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record