Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorTrottet, Cécile
dc.contributor.authorSchürch, Manuel
dc.contributor.authorAllam, Ahmed
dc.contributor.authorPetelytska, Liubov
dc.contributor.authorCastellvi, Ivan
dc.contributor.authorBečvář, Radim
dc.contributor.authorSimeón-Aznar , Carmen Pilar
dc.date.accessioned2025-11-05T13:43:48Z
dc.date.available2025-11-05T13:43:48Z
dc.date.issued2025-09-01
dc.identifier.citationTrottet C, Schürch M, Allam A, Petelytska L, Castellví I, Bečvář R, et al. Deep hierarchical subtyping of multi-organ systemic sclerosis trajectories - a EUSTAR study. npj Digit Med. 2025 Sep 1;8:563.
dc.identifier.issn2398-6352
dc.identifier.urihttp://hdl.handle.net/11351/14027
dc.descriptionSystemic sclerosis trajectories
dc.description.abstractSystemic sclerosis (SSc) is a chronic autoimmune disease with multi-organ involvement. Historically, SSc classification has focused on the type of skin involvement (limited versus diffuse); however, a growing evidence of organ-specific variability suggests the presence of more than two distinct subtypes. We propose a semi-supervised generative deep learning framework leveraging expert-driven definitions of organ-specific involvement and severity. We model SSc disease trajectories in the European Scleroderma Trials and Research (EUSTAR) database, containing 14,000 patients across 67,000 medical visits, and identify clinically meaningful subtypes to enhance patient stratification and prognosis. We systematically evaluate the model’s predictive accuracy, robustness to missing data, and clinical interpretability. We identified five patient clusters, separating patients based on the degree of organ involvement. Notably, a subset with limited skin involvement still showed high risks of lung and heart complications, underscoring the importance of data-driven methods and multi-organ models to complement established insights from clinical practice.
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.ispartofseriesnpj Digital Medicine;8
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectAprenentatge profund
dc.subjectEsclerosi sistemàtica progressiva - Classificació
dc.subject.meshScleroderma, Systemic
dc.subject.mesh/classification
dc.subject.meshDeep Learning
dc.titleDeep hierarchical subtyping of multi-organ systemic sclerosis trajectories - a EUSTAR study
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1038/s41746-025-01962-y
dc.subject.decsesclerodermia sistémica
dc.subject.decs/clasificación
dc.subject.decsaprendizaje profundo
dc.relation.publishversionhttps://doi.org/10.1038/s41746-025-01962-y
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Trottet C] Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland. ETH AI Center, Zurich, Switzerland. [Schürch M] Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA. [Allam A] Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland. [Petelytska L] Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Department of Internal Medicine #3, Bogomolets National Medical University, Kyiv, Ukraine. [Castellví I] Department of Rheumatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. [Bečvář R] Institute of Rheumatology, Department of Rheumatology, 1st Medical School, Charles University, Prague, Czech Republic. [Simeón-Aznar CP] Unitat de Malalties Autoimmunes Sistèmiques, Servei de Medicina Interna, Vall d’Hebron Hospital Universitari, Barcelona, Spain
dc.identifier.pmid40890392
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record