Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorPadilla Sirera, Natalia
dc.contributor.authorDe la Cruz Montserrat, Fco. Xavier
dc.contributor.authorÁlvarez de la Crespo, Elena
dc.date.accessioned2021-04-22T08:59:40Z
dc.date.available2021-04-22T08:59:40Z
dc.date.issued2017-08-11
dc.identifier.citationde la Campa EÁ, Padilla N, de la Cruz X. Development of pathogenicity predictors specific for variants that do not comply with clinical guidelines for the use of computational evidence. BMC Genomics. 2017 Aug 11;18(Suppl 5):569.
dc.identifier.issn1471-2164
dc.identifier.urihttps://hdl.handle.net/11351/5900
dc.descriptionIn silico pathogenicity predictors; Missense variants; Next-generation sequencing
dc.description.abstractBackground Strict guidelines delimit the use of computational information in the clinical setting, due to the still moderate accuracy of in silico tools. These guidelines indicate that several tools should always be used and that full coincidence between them is required if we want to consider their results as supporting evidence in medical decision processes. Application of this simple rule certainly decreases the error rate of in silico pathogenicity assignments. However, when predictors disagree this rule results in the rejection of potentially valuable information for a number of variants. In this work, we focus on these variants of the protein sequence and develop specific predictors to help improve the success rate of their annotation. Results We have used a set of 59,442 protein sequence variants (15,723 pathological and 43,719 neutral) from 228 proteins to identify those cases for which pathogenicity predictors disagree. We have repeated this process for all the possible combinations of five known methods (SIFT, PolyPhen-2, PON-P2, CADD and MutationTaster2). For each resulting subset we have trained a specific pathogenicity predictor. We find that these specific predictors are able to discriminate between neutral and pathogenic variants, with a success rate different from random. They tend to outperform the constitutive methods but this trend decreases as the performance of the constitutive predictor improves (e.g. with PON-P2 and PolyPhen-2). We also find that specific methods outperform standard consensus methods (Condel and CAROL). Conclusion Focusing development efforts on the case of variants for which known methods disagree we may obtain pathogenicity predictors with improved performances. Although we have not yet reached the success rate that allows the use of this computational evidence in a clinical setting, the simplicity of the approach indicates that more advanced methods may reach this goal in a close future.
dc.language.isoeng
dc.publisherBMC
dc.relation.ispartofseriesBMC Genomics;18(Suppl 5)
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectSimulació per ordinador
dc.subjectMicrobiologia
dc.subject.meshSequence Analysis, Protein
dc.subject.mesh/methods
dc.subject.meshComputer Simulation
dc.titleDevelopment of pathogenicity predictors specific for variants that do not comply with clinical guidelines for the use of computational evidence
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1186/s12864-017-3914-0
dc.subject.decsanálisis de secuencias de proteínas
dc.subject.decs/métodos
dc.subject.decssimulación por ordenador
dc.relation.publishversionhttp://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3914-0
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Álvarez de la Campa E] Grup de Bioinformàtica Clínica i Translacional, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Padilla N] Grup de Bioinformàtica Clínica i Translacional, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [de la Cruz X] Grup de Bioinformàtica Clínica i Translacional, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. ICREA, Barcelona, Spain
dc.identifier.pmid28812538
dc.identifier.wos000410997600001
dc.relation.projectidinfo:eu-repo/grantAgreement/ES/1PN/2008-2011/BIO2012-40133
dc.relation.projectidinfo:eu-repo/grantAgreement/ES/PE2013-2016/SAF2016-80255-R
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record