Validation of virtual water phantom software for pre-treatment verification of single-isocenter multiple-target stereotactic radiosurgery
Abstract
The aim of this study was to benchmark the accuracy of the VIrtual Phantom Epid dose Reconstruction (VIPER) software for pre-treatment dosimetric verification of multiple-target stereotactic radiosurgery (SRS). VIPER is an EPID-based method to reconstruct a 3D dose distribution in a virtual phantom from in-air portal images. Validation of the VIPER dose calculation was assessed using several MLC-defined fields for a 6 MV photon beam. Central axis percent depth doses (PDDs) and output factors were measured with an ionization chamber in a water tank, while dose planes at a depth of 10 cm in a solid flat phantom were acquired with radiochromic films. The accuracy of VIPER for multiple-target SRS plan verification was benchmarked against Monte Carlo simulations. Eighteen multiple-target SRS plans designed with the Eclipse treatment planning system were mapped to a cylindrical water phantom. For each plan, the 3D dose distribution reconstructed by VIPER within the phantom was compared with the Monte Carlo simulation, using a 3D gamma analysis. Dose differences (VIPER vs. measurements) generally within 2% were found for the MLC-defined fields, while film dosimetry revealed gamma passing rates (GPRs) ≥95% for a 3%/1 mm criteria. For the 18 multiple-target SRS plans, average 3D GPRs greater than 93% and 98% for the 3%/2 mm and 5%/2 mm criteria, respectively. Our results validate the use of VIPER as a dosimetric verification tool for pre-treatment QA of single-isocenter multiple-target SRS plans. The method requires no setup time on the linac and results in an accurate 3D characterization of the delivered dose.
Keywords
Multiple‐target; SRS; Virtual phantom
Bibliographic citation
Calvo‐Ortega J, Greer PB, Hermida‐López M, Moragues‐Femenía S, Laosa‐Bello C, Casals‐Farran J. Validation of virtual water phantom software for pre‐treatment verification of single‐isocenter multiple‐target stereotactic radiosurgery. J Appl Clin Med Phys. 2021 Jun;22(6):241–252.
Audience
Professionals
Use this identifier for quote and/or link this document
https://hdl.handle.net/11351/6776This item appears in following collections
- HVH - Articles científics [2491]
The following license files are associated with this item: