| dc.contributor | Vall d'Hebron Barcelona Hospital Campus |
| dc.contributor.author | Padilla Sirera, Natalia |
| dc.contributor.author | De la Cruz Montserrat, Fco. Xavier |
| dc.contributor.author | Ozkan, Selen |
| dc.date.accessioned | 2022-03-21T09:05:26Z |
| dc.date.available | 2022-03-21T09:05:26Z |
| dc.date.issued | 2021-06 |
| dc.identifier.citation | Özkan S, Padilla N, de la Cruz X. Towards a New, Endophenotype-Based Strategy for Pathogenicity Prediction in BRCA1 and BRCA2: In Silico Modeling of the Outcome of HDR/SGE Assays for Missense Variants. Int J Mol Sci. 2021 Jun;22(12):6226. |
| dc.identifier.issn | 1422-0067 |
| dc.identifier.uri | https://hdl.handle.net/11351/7216 |
| dc.description | Endophenotype; Pathogenicity predictions; Protein-specific predictor |
| dc.description.abstract | The present limitations in the pathogenicity prediction of BRCA1 and BRCA2 (BRCA1/2) missense variants constitute an important problem with negative consequences for the diagnosis of hereditary breast and ovarian cancer. However, it has been proposed that the use of endophenotype predictions, i.e., computational estimates of the outcomes of functional assays, can be a good option to address this bottleneck. The application of this idea to the BRCA1/2 variants in the CAGI 5-ENIGMA international challenge has shown promising results. Here, we developed this approach, exploring the predictive performances of the regression models applied to the BRCA1/2 variants for which the values of the homology-directed DNA repair and saturation genome editing assays are available. Our results first showed that we can generate endophenotype estimates using a few molecular-level properties. Second, we show that the accuracy of these estimates is enough to obtain pathogenicity predictions comparable to those of many standard tools. Third, endophenotype-based predictions are complementary to, but do not outperform, those of a Random Forest model trained using variant pathogenicity annotations instead of endophenotype values. In summary, our results confirmed the usefulness of the endophenotype approach for the pathogenicity prediction of the BRCA1/2 missense variants, suggesting different options for future improvements. |
| dc.language.iso | eng |
| dc.publisher | MDPI |
| dc.relation.ispartofseries | International Journal of Molecular Sciences;22(12) |
| dc.rights | Attribution 4.0 International |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
| dc.source | Scientia |
| dc.subject | Mama - Càncer - Diagnòstic |
| dc.subject | Ovaris - Càncer - Diagnòstic |
| dc.subject | Simulació per ordinador |
| dc.subject.mesh | Computer Simulation |
| dc.subject.mesh | Breast Neoplasms |
| dc.subject.mesh | /diagnosis |
| dc.subject.mesh | Ovarian Neoplasms |
| dc.title | Towards a New, Endophenotype-Based Strategy for Pathogenicity Prediction in BRCA1 and BRCA2: In Silico Modeling of the Outcome of HDR/SGE Assays for Missense Variants |
| dc.type | info:eu-repo/semantics/article |
| dc.identifier.doi | 10.3390/ijms22126226 |
| dc.subject.decs | simulación por ordenador |
| dc.subject.decs | neoplasias de la mama |
| dc.subject.decs | /diagnóstico |
| dc.subject.decs | neoplasias ováricas |
| dc.relation.publishversion | https://doi.org/10.3390/ijms22126226 |
| dc.type.version | info:eu-repo/semantics/publishedVersion |
| dc.audience | Professionals |
| dc.contributor.organismes | Institut Català de la Salut |
| dc.contributor.authoraffiliation | [Özkan S, Padilla N] Unitat de Recerca en Bioinformàtica Clínica i Translacional, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [de la Cruz X] Unitat de Recerca en Bioinformàtica Clínica i Translacional, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain |
| dc.identifier.pmid | 34207612 |
| dc.identifier.wos | 000667406100001 |
| dc.relation.projectid | info:eu-repo/grantAgreement/ES/PE2017-2020/PID2019-111217RB-I00 |
| dc.relation.projectid | info:eu-repo/grantAgreement/ES/PE2013-2016/SAF2016-80255-R |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess |