Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorMavaddat, Nasim
dc.contributor.authorFicorella, Lorenzo
dc.contributor.authorCarver, Tim
dc.contributor.authorLee, Andrew
dc.contributor.authorCunningham, Alex P.
dc.contributor.authorLush, Michael
dc.contributor.authorPardo Muñoz, Monica
dc.contributor.authorBalmaña Gelpí, Judith
dc.date.accessioned2023-03-21T13:47:01Z
dc.date.available2023-03-21T13:47:01Z
dc.date.issued2023-03-01
dc.identifier.citationMavaddat N, Ficorella L, Carver T, Lee A, Cunningham AP, Lush M, et al. Incorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model. Cancer Epidemiol Biomarkers Prev. 2023 Mar 1;32(3):422–7.
dc.identifier.issn1538-7755
dc.identifier.urihttps://hdl.handle.net/11351/9217
dc.descriptionPolygenic risk; Prediction; Breast cancer
dc.description.abstractBackground: The multifactorial risk prediction model BOADICEA enables identification of women at higher or lower risk of developing breast cancer. BOADICEA models genetic susceptibility in terms of the effects of rare variants in breast cancer susceptibility genes and a polygenic component, decomposed into an unmeasured and a measured component - the polygenic risk score (PRS). The current version was developed using a 313 SNP PRS. Here, we evaluated approaches to incorporating this PRS and alternative PRS in BOADICEA. Methods: The mean, SD, and proportion of the overall polygenic component explained by the PRS (α2) need to be estimated. α was estimated using logistic regression, where the age-specific log-OR is constrained to be a function of the age-dependent polygenic relative risk in BOADICEA; and using a retrospective likelihood (RL) approach that models, in addition, the unmeasured polygenic component. Results: Parameters were computed for 11 PRS, including 6 variations of the 313 SNP PRS used in clinical trials and implementation studies. The logistic regression approach underestimates α⁠, as compared with the RL estimates. The RL α estimates were very close to those obtained by assuming proportionality to the OR per 1 SD, with the constant of proportionality estimated using the 313 SNP PRS. Small variations in the SNPs included in the PRS can lead to large differences in the mean. Conclusions: BOADICEA can be readily adapted to different PRS in a manner that maintains consistency of the model.
dc.language.isoeng
dc.publisherAmerican Association for Cancer Research
dc.relation.ispartofseriesCancer Epidemiology, Biomarkers & Prevention;32(3)
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectMama - Càncer - Aspectes genètics
dc.subjectMama - Càncer - Diàtesi
dc.subjectMama - Càncer - Factors de risc
dc.subject.meshBreast Neoplasms
dc.subject.mesh/genetics
dc.subject.meshGenetic Predisposition to Disease
dc.subject.meshRisk Factors
dc.titleIncorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1158/1055-9965.EPI-22-0756
dc.subject.decsneoplasias de la mama
dc.subject.decs/genética
dc.subject.decspredisposición genética a la enfermedad
dc.subject.decsfactores de riesgo
dc.relation.publishversionhttps://doi.org/10.1158/1055-9965.EPI-22-0756
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Mavaddat N, Ficorella L, Carver T, Lee A, Cunningham AP, Lush M] Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. [Pardo M] Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Balmaña J] Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. Servei d’Oncologia Mèdica, Vall d’Hebron Hospital Universitari, Barcelona, Spain
dc.identifier.pmid36649146
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/633784
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/634935
dc.relation.projectidinfo:eu-repo/grantAgreement/ES/PE2017-2020/PI19%2F01195
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record