Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorColl Benejam, Llucia
dc.contributor.authorPareto Onghena, Deborah
dc.contributor.authorCarbonell i Mirabent, Pere
dc.contributor.authorCobo Calvo, Alvaro
dc.contributor.authorArrambide, Georgina
dc.contributor.authorVidal Jordana, Angela
dc.contributor.authorCastillo Justribo, Joaquin
dc.contributor.authorZabalza de Torres, Ana
dc.contributor.authorGalán Cartaña, Ingrid
dc.contributor.authorMidaglia Fernandez, Luciana
dc.contributor.authorNos Llopis, Carlos
dc.contributor.authorSalerno, Anna Laura
dc.contributor.authorAuger Acosta, Cristina
dc.contributor.authorAlberich Jordà, Manel
dc.contributor.authorRio Izquierdo, Jordi
dc.contributor.authorOliver, Arnau
dc.contributor.authorMontalban, Xavier
dc.contributor.authorRovira, Alex
dc.contributor.authorTintore, Mar
dc.contributor.authorTur Gomez, Carmen
dc.contributor.authorSastre Garriga, Jaume
dc.contributor.authorComabella Lopez, Manuel
dc.contributor.authorRodriguez Acevedo, Breogan
dc.contributor.authorLlado, Xavier
dc.date.accessioned2023-03-29T10:09:31Z
dc.date.available2023-03-29T10:09:31Z
dc.date.issued2023
dc.identifier.citationColl L, Pareto D, Carbonell-Mirabent P, Cobo-Calvo Á, Arrambide G, Vidal-Jordana Á, et al. Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI. NeuroImage Clin. 2023;38:103376.
dc.identifier.issn2213-1582
dc.identifier.urihttps://hdl.handle.net/11351/9263
dc.descriptionDeep learning; Disability; Structural MRI
dc.description.abstractThe application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation. From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: ≥3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps. The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any re-training (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system.
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesNeuroImage: Clinical;38
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScientia
dc.subjectEsclerosi múltiple - Imatgeria per ressonància magnètica
dc.subjectAprenentatge profund
dc.subject.meshMultiple Sclerosis
dc.subject.mesh/diagnostic imaging
dc.subject.meshDeep Learning
dc.titleDeciphering multiple sclerosis disability with deep learning attention maps on clinical MRI
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.nicl.2023.103376
dc.subject.decsesclerosis múltiple
dc.subject.decs/diagnóstico por imagen
dc.subject.decsaprendizaje profundo
dc.relation.publishversionhttps://doi.org/10.1016/j.nicl.2023.103376
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Coll L, Carbonell-Mirabent P, Cobo-Calvo Á, Arrambide G, Vidal-Jordana Á, Comabella M, Castilló J, Rodríguez-Acevedo B, Zabalza A, Galán I, Midaglia L, Nos C, Río J, Sastre-Garriga J, Montalban X, Tintoré M, Tur C] Centre d’Esclerosi Múltiple de Catalunya (CEMCAT), Barcelona, Spain. Vall d’Hebron Hospital Universitari, Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Pareto D, Salerno A, Auger C, Alberich M, Rovira À] Secció de Neuroradiologia, Institut de Diagnòstic per la Imatge (IDI), Vall d'Hebron Hospital Universitari, Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Oliver A, Lladó X] Research institute of Computer Vision and Robotics, University of Girona, Girona, Spain
dc.identifier.pmid36940621
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record