Show simple item record

 
dc.contributorHospital General de Granollers
dc.contributor.authorJuan, Judith
dc.contributor.authorMonsó, Eduard
dc.contributor.authorLozano, Carme
dc.contributor.authorCufí, Marta
dc.contributor.authorSubías-Beltrán, Paula
dc.contributor.authorRuiz Dern, Laura
dc.contributor.authorRubiés, Carles
dc.date.accessioned2023-06-27T12:15:35Z
dc.date.available2023-06-27T12:15:35Z
dc.date.issued2023-05-12
dc.identifier.citationJuan J, Monsó E, Lozano C, Cufí M, Subías-Beltrán P, Ruiz-Dern L, et al. Computer-assisted diagnosis for an early identification of lung cancer in chest X rays. Sci Rep. 2023 May 12;13(1):7720.
dc.identifier.urihttps://hdl.handle.net/11351/9909
dc.descriptionLung cancer; X-rays; Computer-assisted diagnosis
dc.description.abstractComputer-assisted diagnosis (CAD) algorithms have shown its usefulness for the identification of pulmonary nodules in chest x-rays, but its capability to diagnose lung cancer (LC) is unknown. A CAD algorithm for the identification of pulmonary nodules was created and used on a retrospective cohort of patients with x-rays performed in 2008 and not examined by a radiologist when obtained. X-rays were sorted according to the probability of pulmonary nodule, read by a radiologist and the evolution for the following three years was assessed. The CAD algorithm sorted 20,303 x-rays and defined four subgroups with 250 images each (percentiles ≥ 98, 66, 33 and 0). Fifty-eight pulmonary nodules were identified in the ≥ 98 percentile (23,2%), while only 64 were found in lower percentiles (8,5%) (p < 0.001). A pulmonary nodule was confirmed by the radiologist in 39 out of 173 patients in the high-probability group who had follow-up information (22.5%), and in 5 of them a LC was diagnosed with a delay of 11 months (12.8%). In one quarter of the chest x-rays considered as high-probability for pulmonary nodule by a CAD algorithm, the finding is confirmed and corresponds to an undiagnosed LC in one tenth of the cases.
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofseriesScientific Reports;13(1)
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectPulmons - Càncer
dc.subjectRaigs X
dc.subjectImatgeria per al diagnòstic - Tècniques digitals
dc.subject.meshLung Neoplasms
dc.subject.meshDiagnosis, Computer-Assisted
dc.subject.meshX-Ray Therapy
dc.titleComputer-assisted diagnosis for an early identification of lung cancer in chest X rays
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1038/s41598-023-34835-z
dc.subject.decsneoplasias pulmonares
dc.subject.decsdiagnóstico asistido por ordenador
dc.subject.decstratamiento con rayos X
dc.relation.publishversionhttps://doi.org/10.1038/s41598-023-34835-z
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.authoraffiliation[Juan J] Innovation Department, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain. [Monsó E] Airway Infammation Research Group, Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí 1, Sabadell, Spain. [Lozano C, Cufí M] Diagnostic Imaging Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain. [Subías-Beltrán P, Ruiz-Dern L] Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain. [Rubiés C] Informatics and Systems Department, Hospital General de Granollers, Granollers, Spain
dc.identifier.pmid37173327
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record